Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana.

Identifieur interne : 000069 ( Main/Exploration ); précédent : 000068; suivant : 000070

Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana.

Auteurs : Jelena Budimir [Allemagne] ; Katrin Treffon [Allemagne] ; Aswin Nair [Allemagne] ; Corinnna Thurow [Allemagne] ; Christiane Gatz [Allemagne]

Source :

RBID : pubmed:32315441

Abstract

Salicylic acid (SA) is an important signaling molecule of the plant immune system. In Arabidopsis thaliana, SA biosynthesis is indirectly modulated by the closely related transcription factors TGACG-BINDING FACTOR 1 and 4 (TGA1 and TGA4, respectively). They activate expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, the gene product of which regulates the key SA biosynthesis gene ISOCHORISMATE SYNTHASE 1. Since TGA1 interacts with the SA receptor NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) in a redox-dependent manner and since the redox state of TGA1 is altered in SA-treated plants, TGA1 was assumed to play a role in the NPR1-dependent signaling cascade. Here, we identified 193 out of 2090 SA-induced genes that require TGA1/TGA4 for maximal expression after SA treatment. One robustly TGA1/TGA4-dependent gene encodes for the SA hydroxylase DOWNY MILDEW RESISTANT 6-LIKE OXYGENASE 1, suggesting an additional regulatory role of TGA1/TGA4 in SA catabolism. Expression of TGA1/TGA4-dependent genes in mock/SA-treated or Pseudomonas-infected plants was rescued in the tga1 tga4 double mutant after introduction of a mutant genomic TGA1 fragment encoding a TGA1 protein without any cysteines. Thus, the functional significance of the observed redox modification of TGA1 in SA-treated tissues remains enigmatic.

DOI: 10.1111/nph.16614
PubMed: 32315441


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana.</title>
<author>
<name sortKey="Budimir, Jelena" sort="Budimir, Jelena" uniqKey="Budimir J" first="Jelena" last="Budimir">Jelena Budimir</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Treffon, Katrin" sort="Treffon, Katrin" uniqKey="Treffon K" first="Katrin" last="Treffon">Katrin Treffon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Nair, Aswin" sort="Nair, Aswin" uniqKey="Nair A" first="Aswin" last="Nair">Aswin Nair</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Thurow, Corinnna" sort="Thurow, Corinnna" uniqKey="Thurow C" first="Corinnna" last="Thurow">Corinnna Thurow</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gatz, Christiane" sort="Gatz, Christiane" uniqKey="Gatz C" first="Christiane" last="Gatz">Christiane Gatz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32315441</idno>
<idno type="pmid">32315441</idno>
<idno type="doi">10.1111/nph.16614</idno>
<idno type="wicri:Area/Main/Corpus">000159</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000159</idno>
<idno type="wicri:Area/Main/Curation">000159</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000159</idno>
<idno type="wicri:Area/Main/Exploration">000159</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana.</title>
<author>
<name sortKey="Budimir, Jelena" sort="Budimir, Jelena" uniqKey="Budimir J" first="Jelena" last="Budimir">Jelena Budimir</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Treffon, Katrin" sort="Treffon, Katrin" uniqKey="Treffon K" first="Katrin" last="Treffon">Katrin Treffon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Nair, Aswin" sort="Nair, Aswin" uniqKey="Nair A" first="Aswin" last="Nair">Aswin Nair</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Thurow, Corinnna" sort="Thurow, Corinnna" uniqKey="Thurow C" first="Corinnna" last="Thurow">Corinnna Thurow</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gatz, Christiane" sort="Gatz, Christiane" uniqKey="Gatz C" first="Christiane" last="Gatz">Christiane Gatz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Salicylic acid (SA) is an important signaling molecule of the plant immune system. In Arabidopsis thaliana, SA biosynthesis is indirectly modulated by the closely related transcription factors TGACG-BINDING FACTOR 1 and 4 (TGA1 and TGA4, respectively). They activate expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, the gene product of which regulates the key SA biosynthesis gene ISOCHORISMATE SYNTHASE 1. Since TGA1 interacts with the SA receptor NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) in a redox-dependent manner and since the redox state of TGA1 is altered in SA-treated plants, TGA1 was assumed to play a role in the NPR1-dependent signaling cascade. Here, we identified 193 out of 2090 SA-induced genes that require TGA1/TGA4 for maximal expression after SA treatment. One robustly TGA1/TGA4-dependent gene encodes for the SA hydroxylase DOWNY MILDEW RESISTANT 6-LIKE OXYGENASE 1, suggesting an additional regulatory role of TGA1/TGA4 in SA catabolism. Expression of TGA1/TGA4-dependent genes in mock/SA-treated or Pseudomonas-infected plants was rescued in the tga1 tga4 double mutant after introduction of a mutant genomic TGA1 fragment encoding a TGA1 protein without any cysteines. Thus, the functional significance of the observed redox modification of TGA1 in SA-treated tissues remains enigmatic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32315441</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16614</ELocationID>
<Abstract>
<AbstractText>Salicylic acid (SA) is an important signaling molecule of the plant immune system. In Arabidopsis thaliana, SA biosynthesis is indirectly modulated by the closely related transcription factors TGACG-BINDING FACTOR 1 and 4 (TGA1 and TGA4, respectively). They activate expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, the gene product of which regulates the key SA biosynthesis gene ISOCHORISMATE SYNTHASE 1. Since TGA1 interacts with the SA receptor NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) in a redox-dependent manner and since the redox state of TGA1 is altered in SA-treated plants, TGA1 was assumed to play a role in the NPR1-dependent signaling cascade. Here, we identified 193 out of 2090 SA-induced genes that require TGA1/TGA4 for maximal expression after SA treatment. One robustly TGA1/TGA4-dependent gene encodes for the SA hydroxylase DOWNY MILDEW RESISTANT 6-LIKE OXYGENASE 1, suggesting an additional regulatory role of TGA1/TGA4 in SA catabolism. Expression of TGA1/TGA4-dependent genes in mock/SA-treated or Pseudomonas-infected plants was rescued in the tga1 tga4 double mutant after introduction of a mutant genomic TGA1 fragment encoding a TGA1 protein without any cysteines. Thus, the functional significance of the observed redox modification of TGA1 in SA-treated tissues remains enigmatic.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Budimir</LastName>
<ForeName>Jelena</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Treffon</LastName>
<ForeName>Katrin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nair</LastName>
<ForeName>Aswin</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thurow</LastName>
<ForeName>Corinnna</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gatz</LastName>
<ForeName>Christiane</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-2741-8514</Identifier>
<AffiliationInfo>
<Affiliation>Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Dorothea-Schlözer-Fellowship (Göttingen University)</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis thaliana </Keyword>
<Keyword MajorTopicYN="N">NPR1</Keyword>
<Keyword MajorTopicYN="N">TGA transcription factors</Keyword>
<Keyword MajorTopicYN="N">defense responses</Keyword>
<Keyword MajorTopicYN="N">redox regulation</Keyword>
<Keyword MajorTopicYN="N">salicylic acid</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32315441</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16614</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Droge-Laser W. 2012. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biology 12: e125.</Citation>
</Reference>
<Reference>
<Citation>Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57-63.</Citation>
</Reference>
<Reference>
<Citation>Chi YH, Paeng SK, Kim MJ, Hwang GY, Melencion SM, Oh HT, Lee SY. 2013. Redox-dependent functional switching of plant proteins accompanying with their structural changes. Frontiers in Plant Science 4: e277.</Citation>
</Reference>
<Reference>
<Citation>Delaunay A, Isnard AD, Toledano MB. 2000. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO Journal 19: 5157-5166.</Citation>
</Reference>
<Reference>
<Citation>Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181-2191.</Citation>
</Reference>
<Reference>
<Citation>Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173: 1454-1467.</Citation>
</Reference>
<Reference>
<Citation>Eckardt NA. 2003. A new twist on systemic acquired resistance: redox control of the NPR1-TGA1 interaction by salicylic acid. Plant Cell 15: 1947-1949.</Citation>
</Reference>
<Reference>
<Citation>Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486: 228-232.</Citation>
</Reference>
<Reference>
<Citation>Gatz C. 2013. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Molecular Plant-Microbe Interactions 26: 151-159.</Citation>
</Reference>
<Reference>
<Citation>Gullner G, Zechmann B, Künstler A, Kiraly L. 2017. The signaling roles of glutathione in plant disease resistance. In: Hossain MA, Mostofa MG, Vivancos PD, Burritt DJ, Fujita M, Tran LSP, eds. Glutathione in plant growth, development, and stress tolerance. Cham, Switzerland: Springer International, 331-357.</Citation>
</Reference>
<Reference>
<Citation>Herrera-Vasquez A, Salinas P, Holuigue L. 2015. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science 6: e171.</Citation>
</Reference>
<Reference>
<Citation>Izawa T, Foster R, Chua NH. 1993. Plant bZIP protein DNA binding specificity. Journal of Molecular Biology 230: 1131-1144.</Citation>
</Reference>
<Reference>
<Citation>Kesarwani M, Yoo J, Dong X. 2007. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiology 144: 336-346.</Citation>
</Reference>
<Reference>
<Citation>Kim Y, Gilmour SJ, Chao L, Park S, Thomashow MF. 2019. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Molecular Plant 13: 157-168.</Citation>
</Reference>
<Reference>
<Citation>Li S, Zachgo S. 2009. Glutaredoxins in development and stress responses. In: Jacquot J-P, ed. Advances in botanical research. Cambridge, MA, USA: Academic Press, 333-361.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Loake GJ. 2016. Redox-regulated plant transcription factors. In: Gonzales DH, ed. Plant transcription factors: evolutionary, structural and functional aspects. Cambridge, MA, USA: Academic Press, 373-384.</Citation>
</Reference>
<Reference>
<Citation>Lindermayr C, Sell S, Muller B, Leister D, Durner J. 2010. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22: 2894-2907.</Citation>
</Reference>
<Reference>
<Citation>Michelet L, Zaffagnini M, Morisse S, Sparla F, Perez-Perez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P et al. 2013. Redox regulation of the Calvin-Benson cycle: something old, something new. Frontiers in Plant Science 4: e470.</Citation>
</Reference>
<Reference>
<Citation>Moore JW, Loake GJ, Spoel SH. 2011. Transcription dynamics in plant immunity. Plant Cell 23: 2809-2820.</Citation>
</Reference>
<Reference>
<Citation>Mou Z, Fan W, Dong X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944.</Citation>
</Reference>
<Reference>
<Citation>Niggeweg R, Thurow C, Weigel R, Pfitzner U, Gatz C. 2000. Tobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding properties. Plant Molecular Biology 42: 775-788.</Citation>
</Reference>
<Reference>
<Citation>Pieterse CM, Van Loon LC. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology 7: 456-464.</Citation>
</Reference>
<Reference>
<Citation>Qin XF, Holuigue L, Horvath DM, Chua NH. 1994. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell 6: 863-874.</Citation>
</Reference>
<Reference>
<Citation>Saleh A, Withers J, Mohan R, Marques J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, Dong X. 2015. Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host & Microbe 18: 169-182.</Citation>
</Reference>
<Reference>
<Citation>Shearer HL, Cheng YT, Wang L, Liu J, Boyle P, Despres C, Zhang Y, Li X, Fobert PR. 2012. Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion. Molecular Plant-Microbe Interactions 25: 1459-1468.</Citation>
</Reference>
<Reference>
<Citation>Song YH, Song NY, Shin SY, Kim HJ, Yun DJ, Lim CO, Lee SY, Kang KY, Hong JC. 2008. Isolation of CONSTANS as a TGA4/OBF4 interacting protein. Molecules and Cells 25: 559-565.</Citation>
</Reference>
<Reference>
<Citation>Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. 2009. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137: 860-872.</Citation>
</Reference>
<Reference>
<Citation>Sun T, Busta L, Zhang Q, Ding P, Jetter R, Zhang Y. 2018. TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g). New Phytologist 217: 344-354.</Citation>
</Reference>
<Reference>
<Citation>Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. 2008. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321: 952-956.</Citation>
</Reference>
<Reference>
<Citation>Wang D, Amornsiripanitch N, Dong X. 2006. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens 2: e123.</Citation>
</Reference>
<Reference>
<Citation>Wang L, Tsuda K, Truman W, Sato M, le Nguyen V, Katagiri F, Glazebrook J. 2011. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. The Plant Journal 67: 1029-1041.</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Salasini BC, Khan M, Devi B, Bush M, Subramaniam R, Hepworth SR. 2019. Clade I TGACG-motif binding basic leucine zipper transcription factors mediate BLADE-ON-PETIOLE-dependent regulation of development. Plant Physiology 180: 937-951.</Citation>
</Reference>
<Reference>
<Citation>Wildermuth MC, Dewdney J, Wu G, Ausubel FM. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565.</Citation>
</Reference>
<Reference>
<Citation>Zeilmaker T, Ludwig NR, Elberse J, Seidl MF, Berke L, Van Doorn A, Schuurink RC, Snel B, Van den Ackerveken G. 2015. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. The Plant Journal 81: 210-222.</Citation>
</Reference>
<Reference>
<Citation>Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS. 2013. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proceedings of the National Academy of Sciences, USA 110: 14807-14812.</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Tessaro MJ, Lassner M, Li X. 2003. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15: 2647-2653.</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Xu S, Ding P, Wang D, Cheng YT, He J, Gao M, Xu F, Li Y, Zhu Z et al. 2010. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences, USA 107: 18220-18225.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
<orgName>
<li>Université de Göttingen</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Budimir, Jelena" sort="Budimir, Jelena" uniqKey="Budimir J" first="Jelena" last="Budimir">Jelena Budimir</name>
</region>
<name sortKey="Gatz, Christiane" sort="Gatz, Christiane" uniqKey="Gatz C" first="Christiane" last="Gatz">Christiane Gatz</name>
<name sortKey="Nair, Aswin" sort="Nair, Aswin" uniqKey="Nair A" first="Aswin" last="Nair">Aswin Nair</name>
<name sortKey="Thurow, Corinnna" sort="Thurow, Corinnna" uniqKey="Thurow C" first="Corinnna" last="Thurow">Corinnna Thurow</name>
<name sortKey="Treffon, Katrin" sort="Treffon, Katrin" uniqKey="Treffon K" first="Katrin" last="Treffon">Katrin Treffon</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32315441
   |texte=   Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32315441" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020